
Chapter 2
Traction Power Generation with Tethered Wings

Roland Schmehl, Michael Noom, Rolf van der Vlugt

Abstract A tethered wing can be used in two different ways, to lift payload or to
provide traction power. The latter is the basis of several innovative technical appli-
cations, such as kite-assisted ship propulsion and pumping-kite wind energy con-
version. This chapter presents a theoretical analysis of traction power generation
by a tethered wing, with the objective to establish the fundamental relationships
between system and operational parameters on the one hand, and achievable me-
chanical power output on the other hand. In a first step, it is assumed that the in-
stantaneous flight state of the wing can be approximated by the steady equilibrium
of aerodynamic and tether forces. The analysis considers controlled flight along an
arbitrary predefined trajectory, distinguishing the cases of varying tether length with
fixed point anchoring and constant tether length with anchoring at a point moving in
the ground plane. Theoretical results are compared with literature. In a second step,
the analysis includes the effect of weight and centrifugal acceleration of the wing.

2.1 Introduction

The emerging use of kites for applications such as ship propulsion and electric-
ity generation marks an interesting renaissance of a wind power technology that
had been used for a variety of technical and scientific purposes until replaced by
powered aircraft during the first half of the twentieth century [8]. In contrast to the
historic use, which was mainly the lifting of payload, the current technical focus
is on traction power generation. An example is shown in Fig. 2.1, which illustrates
how advances in high-performance plastic materials, mechatronic systems including
flight control and sensor technology, have contributed to the recent development. To
achieve a high traction power, the wing is operated transverse to the tether in fig-
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Fig. 2.1 A remote-controlled 25m2 Leading Edge Inflatable (LEI) tube kite flying crosswind while
pulling a 4mm cable with a force of 3kN from the ground station swivel, generating a traction
power of 15kW [8]

ure of eight or circular flight maneuvers. Compared to the stationary flight used for
lifting payload, this maneuvered flight has the effect to substantially increase the
relative wind velocity at the wing. Since the aerodynamic forces increase with the
square of this velocity, the generated traction power rises accordingly. For example,
at an average wind speed of 7m/s the transverse flight speed of the kite depicted
in Fig. 2.1 varies between 20m/s and 25m/s, which clearly shows the dominating
crosswind contribution to the traction force.

Compared to the constrained rotational motion of wind turbine blades, the kine-
matics of a maneuvering wing operated on a variable length tether is more complex.
Furthermore, a reliable flight operation requires active control, not only to realize a
specific flight path, but also to adjust the operation to variations in the wind envi-
ronment and to avoid over- or underload of the airborne tensile structure. This can
be particularly challenging for lightweight membrane wings which have a limited
maximum wing loading and react rapidly to wind speed fluctuations. The increased
technical complexity is, however, counterbalanced by the fact that the operation of a
tethered wing can be adapted to a much larger extend to the available wind resource.
For example, variations in the wind field can be compensated for by adjusting the
operational altitude range and by making use of the fact that wind gets generally
stronger and more persistent with increasing altitude.

Using the traction power of a tethered wing for large-scale electricity generation
was first explored by Loyd [7]. The simplified steady flight analysis is restricted to
the downwind direction and distinguishes two fundamental modes: the simple kite
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which is moving only as a result of the extending tether, and the crosswind kite
which is flying transverse to the wind velocity. Neglecting mass and assuming a
straight tether, Loyd derives analytic expressions for the traction power when op-
erating the simple kite at a constant elevation angle and the crosswind kite in the
horizontal ground plane. An often quoted result of this study is the optimal reel-out
speed calculated as 1/3 of the wind speed. Wellicome [10] investigated the use of
kites for ship propulsion. Assuming a straight tether of constant length, the steady
flight analysis considers maneuvering of the kite on a spherical surface. Wellicome
presents results for the amplification of the driving force by flying the kite in figure
of eight maneuvers. These theories were generalized in subsequent studies, suspend-
ing several of the original simplifying assumptions [2, 6].

The objective of this chapter is to combine the existing approaches in a compact
analytic theory which clearly indicates the influence of problem parameters and can
be used for system-level design and optimization. Following the definition of the
physical problem and the discussion of basic assumptions in Sect. 2.2, a univer-
sal formulation of the apparent wind velocity is derived in Sect. 2.3. In Sect. 2.4
the tangential kite velocity is defined as a generalization of the cross wind veloc-
ity. Assuming a massless kite, Sects. 2.5, 2.6 and 2.7 elaborate on traction power
generation and Sect. 2.8 on ground vehicle propulsion. Sect. 2.9 extends the steady
analytical framework by gravitational and inertial effects.

2.2 Problem definition and assumptions

The scope of this chapter is limited to the conversion of wind energy into traction
power using a tethered wing. This mechanical power can be further converted, for
example, into shaft power, by pulling the tether from a stationary drum. It can also
be used directly to pull a moving ground vehicle. The basic physical problem is
illustrated in Fig. 2.2, depicting the idealized state of a straight tether. Distributed
external forces such as gravity and aerodynamic line drag will always lead to sag-
ging of a flexible tether. However, in the traction phase the tether is generally fully
tensioned and the tether force dominates the force equilibrium by orders of magni-
tude. Accordingly, the effect of sagging can be neglected, which is also visible from
Fig. 2.1.

In practice, the type of wing can range from highly flexible membrane wing
to rigid wing. For the purpose of this analysis the integral aerodynamic force Fa
generated by the flying wing is approximated as the sum of a lift vector L and a
drag vector D

Fa = L+D, (2.1)

with the magnitudes of these force vectors represented as
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Fig. 2.2 A kite flying with velocity vk on a straight tether of variable length lt at an elevation angle
β . The origin O of the wind reference frame Xw,Yw,Zw is located at the tether attachment point
and the axis Xw is pointing in the direction of the wind velocity vw.

L =
1
2

ρCLv2
aS, (2.2)

D =
1
2

ρCDv2
aS, (2.3)

where CL and CD are the aerodynamic lift and drag coefficients, respectively, ρ is
the air density and S the surface area of the wing projected in the direction of the lift
vector. The apparent wind velocity is defined as the relative velocity at the wing

va = vw−vk. (2.4)

For the purpose of deriving an analytic theory, the wind velocity vw is assumed to
be uniform and constant, parallel to the ground plane. The aerodynamic coefficients
are assumed to be constant properties of the wing. In reality, however, CL and CD
vary with the instantaneous angle of attack of the wing, which is measured between
the mean chord of the wing and va. For the purpose of developing a closed analytic
model this effect is not accounted for.

Although tether sag is not considered in the analysis, the integral contribution of
aerodynamic line drag can affect the flight motion of the wing significantly, espe-
cially for multi-line tether configurations. This aerodynamic force contribution can
be approximated by adding a fraction of the integral line drag to the aerodynamic
drag of the wing [2]. This simple and effective method is not explicitly described in
this chapter.

It is further assumed that the various forces on the wing all act in a single point
K and that the flight maneuvers of the wing can be approximated as a sequence of



2 Traction Power Generation with Tethered Wings 27

steady state changes. It is a characteristic feature of the lightweight maneuvering
traction wing, that the force equilibrium is generally dominated by the aerodynamic
force Fa and the tether force Ft . Steering of the wing is not taken into account for
the steady analysis, assuming that the wing tracks a predefined flight path.

The effect of the gravitational force Fg increases for lower elevation angles, con-
tributions of inertial forces Fi are relatively small along the tether, the major force
axis. Gravitational and inertial force contributions are not considered within the an-
alytic theory presented in this chapter. In Sect. 2.9 both contributions are taken into
account in the frame of the steady description.

2.3 Apparent wind velocity

The motion of a wing that is operated on a variable length tether can be described
in terms of two fundamental components. A component along the tether, which is
controlled by the deployment of the tether from the ground station, and a component
perpendicular to the tether, which is under the authority of the flight control system
of the wing. A natural choice for the kinematic analysis of such a system are spheri-
cal coordinates with the origin O located at the tether exit point at the ground station
and the radial coordinate r describing the geometrical distance to the kite K. This
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Fig. 2.3 Definition of the apparent wind velocity va = vw−vk. Decomposition of the kite velocity
vk into radial and tangetial components vk,r and vk,τ , respectively. The course angle χ is measured
in the tangential plane τ , the spherical coordinates (r,θ ,φ) are defined with respect to the wind
reference frame Xw,Yw,Zw.

configuration is illustrated in Fig. 2.3, showing the definition of polar angle θ and
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azimuth angle φ . Alternatively to the polar angle the elevation angle β = 90◦− θ
can be used. In spherical coordinates, the kite velocity can be decomposed into a
radial component vk,r and a tangential component vk,τ

vk = vk,r +vk,τ . (2.5)

The direction of vk,τ in the tangential plane τ is quantified by the course angle χ ,
which is measured from the local base vector eθ . Special cases are downwards flight
(χ = 0), upwards flight (χ = 180◦) and horizontal flight (χ = 90◦ and χ = 270◦).
Combining Eqns. (2.4) and (2.5) results in

va = vw−vk,r−vk,τ . (2.6)

Using spherical coordinates (r,θ ,φ) and the course angle χ as defined in Fig. 2.3
the apparent wind velocity va can be expressed as follows

va =

sinθ cosφ
cosθ cosφ
−sinφ

vw−

1
0
0

vk,r−

 0
cos χ
sin χ

vk,τ . (2.7)

Assuming a straight tether as discussed in Sect. 2.2 implies that the radial compo-
nent of the kite velocity and the tether velocity are identical

vk,r = vt . (2.8)

In order to normalize the tether velocity vt = ṙ, the reeling factor is introduced as

f =
vt

vw
, (2.9)

which is positive when the tether length increases. Accordingly, the tangential ve-
locity factor is introduced to normalize the tangential component of the kite velocity

λ =
vk,τ

vw
. (2.10)

This non-dimensional parameter is a generalization of the cross wind factor which
was introduced in [7] for the special case of horizontal flight (χ = 90◦) in a down-
wind position (φ = 0). For this case vk,τ is always perpendicular to vw. Using Eqns.
(2.8)–(2.10), Eq. (2.7) can be expressed as

va =

 sinθ cosφ − f

cosθ cosφ −λ cos χ
−sinφ −λ sin χ

vw. (2.11)

The apparent wind velocity can also be decomposed into radial and tangential com-
ponents
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va = va,r +va,τ . (2.12)

The fundamental relation between the radial and tangential components of the ap-
parent wind velocity and the lift and drag components of the aerodynamic force,

va,τ

va,r
=

L
D
, (2.13)

can be derived from the geometrical similarity of the force and velocity diagrams
illustrated in Fig. 2.4. This similarity can be explained as follows: vectors va and
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Fig. 2.4 Geometrical similarity of the force and velocity diagrams. va and Fa are decomposed in
the plane spanned by the two vectors.

Fa span the plane in which both vectors are decomposed. The aerodynamic drag
component D is aligned with va by definition. The radial component va,r is aligned
with Fa as consequence of the straight tether assumption. The two alignments are
the reason for the geometric similarity.

Equation (2.13) corresponds to [2, Eq. (19)] and to [7, Eq. (11)] for the special
case of φ = 0. The radial component of the apparent wind velocity follows from Eq.
(2.11) as

va,r = (sinθ cosφ − f )vw. (2.14)

Combining Eqns. (2.12)–(2.14) results in

va

vw
= (sinθ cosφ − f )

√
1+
(

L
D

)2

. (2.15)

By definition, the magnitude of the apparent wind velocity cannot be negative which
constrains the reeling factor as follows

f < sinθ cosφ . (2.16)
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This correspond to the fundamental flight requirement that the component of the
wind velocity along the tether needs to be higher than the tether reeling velocity.

2.4 Tangential kite velocity

The tangential component of the apparent wind velocity follows from Eq. (2.11) as

va,τ = vw

√
(cosθ cosφ −λ cos χ)2 +(sinφ +λ sin χ)2. (2.17)

Another equation is obtained by combining Eqns. (2.13) and (2.14)

va,τ = (sinθ cosφ − f )vw
L
D
. (2.18)

For the special case of φ = β = 0, at the point of maximum traction power, this
equation reduces to the relation

λ = (1− f )
L
D
, (2.19)

which was already established in [7]. Combining Eqns. (2.17) and (2.18) and sub-
sequently solving for tangential velocity factor λ results in

λ = a+

√
a2 +b2−1+

(
L
D

)2

(b− f )2, (2.20)

with the trigonometric coefficients

a = cosθ cosφ cos χ− sinφ sin χ, (2.21)
b = sin θ cosφ . (2.22)

The tangential velocity factor illustrates the coupling of the flight velocity of the
wing to the wind velocity, as discussed in Sect. 2.1. An equation for the tangential
kite velocity was also derived in [3, Eq. (3)]. By definition, the tangential velocity
factor λ cannot be negative. Analyzing Eq. (2.20) for this condition results in the
following constraint

sinθ cosφ <

√
1+
( L

D

)2
(1− f 2)+ f

( L
D

)2

1+
( L

D

)2 , (2.23)

which indicates that there is a maximum azimuth angle φmax and elevation angle
βmax for physically possible flight conditions. For horizontal flight (χ = 90◦) in a
downwind position (φ = 0) Eq. (2.20) simplifies to
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λ =

√(
L
D

)2

(sinθ − f )2− cos2 θ , (2.24)

while Eq. (2.23) can be used to derive the maximum elevation angle as

βmax = arccos


√

1+
( L

D

)2
(1− f 2)+ f

( L
D

)2

1+
( L

D

)2

. (2.25)

Fig. 2.5 shows the isolines of the elevation angle β as functions of course angle χ
and tangential velocity factor λ for the special case of flight in a downwind position
(φ = 0) and representative values for lift-to-drag ratio and reeling factor. For β = 0
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Fig. 2.5 Elevation angle β [◦] as a function of kite course χ and tangential velocity factor λ for
φ = 0, L/D = 5 and f = 0.37.

the tangential velocity factor is constant, independent of the course angle, because
the tether is aligned with the wind velocity and the tangential kite velocity is always
perpendicular to the wind velocity. This is not the case anymore for non-zero ele-
vation angles, which show a maximum value of λ at χ = 0, i.e. when the kite flies
downwards. This can be explained on the basis of the projection of Eq. (2.4) into
the tangential plane

vw,τ = va,τ +vk,τ . (2.26)
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The tangential component of the kite velocity vk,τ varies by definition with the
course angle χ . However, the tangential component of the wind velocity vw,τ de-
pends only on the angular position (φ ,β ) of the wing and is independent of χ .
According to Eq. (2.18) the magnitude of the tangential component of the apparent
wind velocity va,τ is also independent of χ . This leaves only the direction of vector
va,τ to adjust to the varying vector vk,τ to fulfill Eq. (2.26). This situation is illus-
trated in Fig. 2.6 for different combinations of va,τ and vk,τ . The diagram clearly

χ
eφ

eθ

va,τ

K

vk,τ

vw,τ

τ

vk,τ,max

Fig. 2.6 Tangential velocity diagram for the special case of φ = 0 but arbitrary value of β .

shows that for φ = 0 the maximum value vk,τ,max occurs at χ = 0. Fig. 2.5 further
shows that the average tangential kite velocity decreases with increasing elevation
angle. This can be explained by the increasing misalignment of tether and wind
velocity which decreases the apparent wind velocity.

2.5 Traction force

As discussed in Sect. 2.2, the assumption of quasi-steady motion of a massless kite
is governed by the equilibrium of tether force Ft and resultant aerodynamic force
Fa

Ft =−Fa. (2.27)

Inserting Eqns. (2.2) and (2.3) into Eq. (2.27) results in

Ft =
1
2

ρCRv2
aS, (2.28)

making use of the resultant aerodynamic force coefficient
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CR =
√

C2
D +C2

L. (2.29)

Substituting the apparent wind velocity in Eq. (2.28) by Eq. (2.15) leads to the
following equation for the normalized tether force

Ft

qS
=CR

[
1+
(

L
D

)2
]
(sinθ cosφ − f )2, (2.30)

where q denotes the dynamic wind pressure

q =
1
2

ρv2
w. (2.31)

Using Eq. (2.29) the aerodynamic coefficient term can be formulated as

CR

[
1+
(

L
D

)2
]
=CR

(
CR

CD

)2

. (2.32)

Equation (2.30) has been published previously by Argatov et al. [2, Eq. (48)].

2.6 Traction power

The generated traction power is determined as the product of tether force and reeling
velocity

P = Ftvt . (2.33)

Inserting the reeling factor as defined in Eq. (2.9) leads to

P = Ft f vw (2.34)

and further inserting the normalized tether force as defined Eq. (2.30) gives

P
PwS

=CR

[
1+
(

L
D

)2
]

f (sinθ cosφ − f )2, (2.35)

where Pw denotes the wind power density

Pw =
1
2

ρv3
w. (2.36)

Equation (2.35) defines the power harvesting factor ζ = P/(PwS) as the normalized
traction power per wing surface area, also introduced as Eq. (1.10) in Chap. 1.

To determine the optimal reeling factor Eq. (2.35) is differentiated with respect to
f . The root of this function defines the value fopt at which the instantaneous power
is maximum
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fopt =
1
3

sinθ cosφ . (2.37)

Equation (2.37) corresponds to [2, Eq. (49)] and for the special case of φ = β = 0
to [7, Eq. (17)]. The maximum instantaneous power follows from substituting Eq.
(2.37) into Eq. (2.35)

Popt

PwS
=CR

[
1+
(

L
D

)2
](

4
27

sin3 θ cos3 φ
)
. (2.38)

For φ = β = 0 Eq. (2.38) reduces to

Popt

PwS
=

4
27

CR

(
CR

CD

)2

, (2.39)

which is also given by Eq. (1.11) in Chap. 1. For larger lift-to-drag ratios CR can be
approximated by CL such that Eq. (2.39) further simplifies to the classic result [7,
Eq. (16)].

Figure 2.7 shows the isolines of instantaneous traction power P and tangential ve-
locity factor λ as functions of reeling factor f and elevation angle β for the special
case of horizontal flight in a downwind position. The power increases with decreas-
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ing elevation angle because the tether increasingly aligns with the wind velocity
vector which effectively increases the apparent wind velocity. The depicted isolines
of P = 1000W and 13000W correspond to power harvesting factors of ζ = 0.2850
and 3.705, respectively. The maximum value ζmax = 3.928 occurs at β = 0 and
f = 1/3 and is quantified by Eq. (2.39). The optimal reeling factor fopt given by
Eq. (2.37) is indicated by the dashed line. The tangential velocity factor λ decreases
with increasing elevation angle. The minimum value isoline λ = 0 coincides with
the theoretically possible maximum elevation angle βmax. As consequence, the top
right area of the diagram represents operational conditions that can not be realized
for the specific choice of wind conditions and system parameters.

2.7 Non-maneuvering wing

For continuous electricity generation, a single traction kite has to be operated in
pumping cycles, alternating between traction and retraction phases. The fundamen-
tal working principles have been discussed in Chap. 1 and an implemented system
is presented in Chap. 23. When terminating the crosswind flight maneuvers at the
end of the traction phase the wing can be moved to an equilibrium angular position
(φ ,β ) such that during reeling in, the only motion is due to the longitudinal tether
velocity. For vanishing tether velocity the kite accordingly assumes a stationary po-
sition which is practical for lifting payload. In [7] the non-maneuvering flight mode
is denoted as simple kite. For vk,τ = 0 Eq. (2.11) reduces to

va =

sinθ cosφ − f

cosθ cosφ
−sinφ

vw, (2.40)

with a normalized magnitude of

va

vw
=
√

1−2 f sinθ cosφ + f 2. (2.41)

Combining Eqns. (2.15) and (2.41) results in the following relation

sinθ cosφ =

√
1+
( L

D

)2
(1− f 2)+ f

( L
D

)2

1+
( L

D

)2 , (2.42)

which is the limiting case of the constraint defined by Eq. (2.23). The parametric
curves defined by Eq. (2.42) are illustrated in Fig. 2.8 for different values of L/D
and a specific choice of f . Each isoline is characterized by a maximum achievable
elevation and azimuth angle βmax and φmax, respectively. Combining Eqns. (2.15)
and (2.42) to eliminate the trigonometric coefficients leads to
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va

vw
=

√
1+
( L

D

)2
(1− f 2)− f√

1+
( L

D

)2
, (2.43)

combining Eqns. (2.28) and (2.43) to

Ft

qS
=CR

[√
1+
( L

D

)2
(1− f 2)− f

]2

1+
( L

D

)2 . (2.44)

and combining Eqns. (2.34) and (2.44) to

P
PwS

=CR

f
[√

1+
( L

D

)2
(1− f 2)− f

]2

1+
( L

D

)2 . (2.45)

This result has also been presented in [7]. It has to be noted, that the equilibrium
positions described by Eq. (2.42) are not necessarily stable flight dynamic states of
the wing [4, 9]. Static and dynamic flight dynamic stability is not in the scope of
this analysis.
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2.8 Traction of a ground vehicle

A kite system can also be used for ground vehicle propulsion. A fixed tether length
is assumed such that the radial kite velocity vk,r is zero. The apparent wind velocity
can then be defined as follows

va = vw−vp−vk, (2.46)

where vp is the additional ground vehicle velocity. It is further assumed that this
velocity is constant in magnitude and direction such that additional inertial terms do
not exist. Using a spherical coordinate system moving with the vehicle, the apparent
wind velocity can be expressed as follows

va =

sinθ cosφ
cosθ cosφ
−sinφ

vw−

sinθ cos(ψ−φ)
cosθ cos(ψ−φ)
−sin(ψ−φ)

vp−

 0
cos χ
sin χ

vk,τ , (2.47)

where the course angle ψ of the ground vehicle is measured in the ground plane
between ground vehicle velocity vp and wind velocity vw. Using the definition of
tangential kite velocity factor λ as given by Eq. (2.10) and the ground vehicle ve-
locity factor

ξ =
vp

vw
, (2.48)

the apparent wind velocity can be expressed as

va =

 sinθ cosφ −ξ sinθ cos(ψ−φ)
cosθ cosφ −ξ cosθ cos(ψ−φ)−λ cos χ
−sinφ +ξ sin(ψ−φ)−λ sin χ

vw. (2.49)

Combining Eqns. (2.12), (2.13) and the radial component of Eq. (2.49) results in

va = [cosφ −ξ cos(ψ−φ)]sinθvw

√
1+
(

L
D

)2

, (2.50)

which is similar to [5, Eq. (3)] when neglecting the ground vehicle velocity. Com-
bining Eqns. (2.28) and (2.50) the normalized tether force is calculated as

Ft

qS
=CR

[
1+
(

L
D

)2
]
[cosφ −ξ cos(ψ−φ)]2 sin2 θ . (2.51)

The force component in direction of the ground vehicle velocity describes the
propulsive force

Fp = Ft sinθ cos(ψ−φ). (2.52)

Combining Eqns. (2.51) and (2.52) results in
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Fp

qS
=CR

[
1+
(

L
D

)2
]
[cosφ −ξ cos(ψ−φ)]2 sin3 θ cos(ψ−φ), (2.53)

with the restriction
ξ <

cosφ
cos(ψ−φ)

, (2.54)

which means that the projection of the ground vehicle velocity onto the tether cannot
be larger than that of the wind velocity, because this would result in a negative
apparent wind velocity. For pure downwind traction (φ = 0) this simplifies to

Fp

qS
=CR

[
1+
(

L
D

)2
]
(1−ξ cosψ)2 sin3 θ cosψ. (2.55)

Figure 2.9 shows isolines of the ground vehicle velocity factor ξ as functions of az-
imuth angle and propulsion force for a specific ground vehicle course. The diagram
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Fig. 2.9 Ground vehicle velocity factor ξ as a function of azimuth angle φ and ground vehicle
propulsion force Fp. The specific conditions are given by ψ = 45◦, indicated by the dashed line,
β = 25◦, L/D = 5, CL = 1, S = 16.7m2, vw = 7m/s and ρ = 1.225kg/m3.

clearly indicates the optimal azimuth angle φopt for achieving a maximum ground
vehicle propulsion force Fp. For increasing ground vehicle velocity, the optimum
shifts to the side of the wind window. This can be explained by the fact that the
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ground vehicle velocity reduces the wind velocity component parallel to the ground
vehicle velocity.

A similar effect is illustrated in Fig. 2.10 which shows isolines of the ground
vehicle velocity factor ξ as functions of ground vehicle course angle and propulsion
force at the optimal azimuth angle. The diagram indicates that an increasing ground
vehicle velocity shifts the optimum ground vehicle course angle ψ to higher course
angles. This effect is also described in [11].
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Fig. 2.10 Ground vehicle velocity factor ξ as a function of ground vehicle course angle ψ and
ground vehicle propulsion force Fp for φ = φopt . The specific conditions are β = 25◦, L/D = 5,
CL = 1, S = 16.7m2, vw = 7m/s and ρ = 1.225kg/m3.

2.9 Gravitational and inertial force corrections

The idealized theory presented in the previous sections does not account for the
mass of the kite. In reality, the non-vanishing mass of the airborne components
introduces gravitational and inertial forces. These effects have been analyzed in [1,
Eq. (7.8)] considering an arbitrary predefined trajectory with constant tether length.
Using spherical coordinates the gravitational force can be expressed as
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Fg = m

−cosθ
sinθ

0

g, (2.56)

with mass m and gravitational constant g. The inertial force is given by

Fi =−m

 r̈− rθ̇ 2− rφ̇ 2 sin2 θ
rθ̈ +2ṙθ̇ − rφ̇ 2 sinθ cosθ

rφ̈ sinθ +2ṙφ̇ sinθ +2rθ̇ φ̇ cosθ

 , (2.57)

where the first derivatives can be expressed as follows

ṙ = f vw, (2.58)

θ̇ =
λvw

lt
cos χ, (2.59)

φ̇ =
λvw

lt

sin χ
sinθ

, (2.60)

using the tether length as a substitute for the radial coordinate

r = lt . (2.61)

Following the assumption of a quasi-steady motion, the time derivatives of the radial
and tangential kite velocity vk,r and vk,τ , respectively, are small. As consequence, the
second derivatives can be evaluated as

r̈ = 0, (2.62)

θ̈ =−θ̇
(

ṙ
lt
+ χ̇ tan χ

)
, (2.63)

φ̈ =−φ̇
(

ṙ
lt
− χ̇

1
tan χ

+ θ̇
1

tanθ

)
. (2.64)

Extending the force balance formulated in Eq. (2.27) by the effects of gravity and
inertia gives

Ft =−Fa−Fg−Fi. (2.65)

The gravitational and inertial forces both have tangential components which distort
the alignment of aerodynamic force and tether force. For this reason the force and
velocity diagrams are not geometrically similar anymore. This is illustrated in Fig.
2.11 considering only the effect of gravity in −ez direction. Therefore, the funda-
mental relation given by Eq. (2.13) is not valid anymore, which means that kine-
matic ratio va,τ/va,r can not be substituted anymore by the lift-to-drag ratio L/D.
The apparent wind velocity va is given by Eq. (2.11), however, the tangential kite
velocity factor λ now takes the form
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Fig. 2.11 Steady force equilibrium considering the effect of gravity.

λ = a+

√
a2 +b2−1+

(
va,τ

va,r

)2

(b− f )2, (2.66)

with the trigonometric coefficients a and b defined in Eqns. (2.21) and (2.22). Ac-
cordingly, the magnitude of the apparent wind velocity is formulated as

va = (sinθ cosφ − f )vw

√
1+
(

va,τ

va,r

)2

. (2.67)

Defining the aerodynamic force as

Fa =
1
2

ρCRv2
aS (2.68)

and expressing the apparent wind velocity by Eq. (2.67) results in

Fa

qS
=CR

[
1+
(

va,τ

va,r

)2
]
(sinθ cosφ − f )2. (2.69)

Physically feasible flight conditions require a kinematic ratio va,τ/va,r for which
the aerodynamic force balances the tangential components of the gravitational and
inertial forces.

The final part of this section describes an iterative solution procedure for the
kinematic ratio. Because the tether force acts in radial direction, the tangential com-
ponents of the aerodynamic force need to balance the tangential components of the
gravitational and inertial forces, which is expressed by
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Fa,θ =−Fg,θ −Fi,θ , (2.70)

Fa,φ =−Fi,φ . (2.71)

The radial component is determined by

Fa,r =
√

F2
a −F2

a,θ −F2
a,φ , (2.72)

and Eqns. (2.69), (2.70) and (2.71) are used to substitute the force terms on the right
hand side. Finally, the definition of the aerodynamic drag force

D =
Fa ·va

v2
a

va (2.73)

is inserted into Eq. (2.1) to obtain the following expression for the lift-to-drag ratio

L
D

=

√(
Fava

Fa ·va

)2

−1, (2.74)

which can be used to determine the kinematic ratio iteratively. Figure 2.12 shows
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computed isolines of the kite mass as functions of the kite course angle and the kine-
matic ratio. The effect on the instantaneous traction power can be significant because
the aerodynamic force depends quadratically on the kinematic ratio, as indicated by
Eq. (2.69). The limiting case of a massless kite recovers Eq. (2.13) and the kine-
matic ratio equals the constant value of the lift-to-drag ratio. For horizontal flight
(χ = 90◦ and χ = 270◦) the kinematic ratio is always lower than the lift-to-drag
ratio. With increasing mass of the kite the kinematic ratio increases for downwards
flight and decreases for upwards flight. However, the increase for downwards flight
is weaker than the decrease for upwards flight. When exceeding a certain mass limit
the algorithm fails to identify a physical solution for the upward flight region.

The effect of gravity and inertia on continuous power generation can be signifi-
cant for the following reasons. Firstly, Fig. 2.12 indicates that the mean kinematic
ratio along a closed-loop trajectory is lower than the lift-to-drag ratio. Secondly,
when the kinematic ratio is lower, the quasi-steady flight velocity of the wing is
lower. This means that the upward flying regions of a closed-loop trajectory require
more time than the downward flying regions. These conclusions are contradicting
the statement in [2] that the kinematic ratio alternates on a closed-loop trajectory
and that the effect on the mean power can therefore be neglected.

Figure 2.13 illustrates the effect of kite mass of 20kg on the traction power for
the special case of horizontal flight in a downwind position (φ = 0). Compared to
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Fig. 2.7 it can be noted that an operation for reeling factors f > 0.37 is not feasible
anymore. Also, the isolines of traction power are shifted to lower values of the el-
evation angle. Within the frame of this steady analysis it can be concluded that an
increasing mass of the airborne components always decreases the available traction
power of the wing.

2.10 Conclusion

The flight velocity vk of a tethered wing for specific wind conditions and operational
parameters can be described analytically by means of a steady analysis. Neglecting
the effects of gravity and inertia, Eq. (2.15) states the apparent wind velocity va, Eq.
(2.30) the tether force Ft and Eq. (2.35) the instantaneous traction power P of a wing
which flies on an arbitrary predefined trajectory.

The maximum instantaneous traction power is associated with an optimal reeling
factor fopt which is given by Eq. (2.37) as one-third of the wind velocity component
in the direction of the tether. The corresponding value Popt is given by Eq. (2.38).
As consequence, generating a maximum traction power requires lower reeling ve-
locities when the wing deviates from the maximum power point, i.e. the center of
the wind window. The instantaneous traction power depends linearly on the pro-
jected surface area of the wing, quadratically on the lift-to-drag ratio and cubically
on the wind velocity. For the purpose of this analysis, it is assumed that the resulting
aerodynamic coefficient CR is independent of the lift-to-drag ratio.

When including the effects of gravity and inertia in the analysis, an iterative solu-
tion procedure has to be employed. An increasing mass of the airborne components
always decreases the available traction power of the wing.

For a small kite power system in the kW-range the instantaneous power in the
traction phase is around 10kW for S = 16.7m2, L/D = 5, vw = 7m/s and β = 25◦.
However future systems can be in the MW-range, e.g. a maximum instantaneous
traction power of 1.2MW is obtained for S = 100m2, L/D = 10, vw = 12m/s and
β = 25◦.
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